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We propose to describe physical systems (quantum or classical) with the aid of 
structures called information systems. We argue that in each theoretical descrip- 
tion of the phenomenology of the preparation process one can identify the set 
of all (pure) states of a physical system with the set of (total) elements of some 
information system. Next we give some consequences of the above arguments. 

1. I N T R O D U C T I O N  

In this paper  we propose to describe physical systems (quantum or 
classical) with the aid of  structures'called information systems. Information 
systems are used already in the theory of domains for denotational semantics 
(Scott, 1982). The mathematical  structure of an information system follows 
from some basic notions that we have about physical reality and properties 
of  truth. 

We are aware of the fact that the notion of a physical system is often 
quite opaque and misleading and may cause many problems related, e.g., 
with the EPR-type experiments. Generally speaking by physical system we 
will understand here an object that we single out from the universe and 
whose interaction with the rest of the universe can be - - t o  sufficient degree 
of approximat ion--neglected.  A concrete theory describes and studies these 
more or less idealized objects by means of a suitable mathematical structure. 

Our approach is concerned with individual physical systems and can 
be employed for classical and quantum systems as well. Of course one can 
always go on to a statistical interpretation, forming the appropriate ensemble 
of  uncorrelated replicas of  individual systems. 

We will assume that in each moment  of  time every individual system 
exists by itself and is in a definite internal state embodying the characteristics 
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of definite properties. A property of a system is comprehended here in the 
sense of an actual property or what Einstein called an "element of physical 
reality." 

As Gisin says: "an element of real i ty--or  equivalently an 'actual 
property' in Piron's terminology--is a property of the physical system that 
can be tested and that is such that if we would actually perform a test, the 
positive result will always come out. Consequently, the elements of reality 
only depend on the system (and not on the measuring apparatus): They 
are in some way engraved in the system." 

They are engraved in the system through the method of preparation 
of the state of the system and they should be consistent with the nature of 
the system as well. 

If the electron has beenprepared  in an eigenstate of the momentum 
operator with eigenvalue p then necessarily, if we make the measurement 
of the momentum, the result will be p. This interpretation is the realistic 
one in the strong sense and satisfies all the requirements of the well-known 
Einstein criticism of the usual statistical interpretation (Aerts, 1979). Internal 
states of the system, and so the actual properties which the states have, 
depend on preparation procedures. Therefore every preparation procedure 
states some family of (actual) properties of a physical state that was prepared 
according to it. It results from this that a property that, in a given theory 
describing our system, one can attribute to a state independently of  whether 
a registration of the result of a measurement of that property later takes 
place, depends on the data concerning the method of preparation of the 
system and on assumptions and rules of inference standing in the theory. 

This is, indeed, precisely the role demanded of a (pure) state specifica- 
tion: namely, to determine maximally informative (maximally precise) 
consistent description of a physical system. 

2. T H E  SET O F  STATES OF A P H Y S I C A L  S Y S T E M  

Definition (Scott, 1982). An information system is a structure: 

(D,A, Con ,~ )  

where D is a set, where A is a distinguished member of D (the least 
informative member), where Con is a set of finite subsets of D (the consistent 
sets), and where ~ is a binary relation between members of Con and 
members of  D (the entailment relation). 
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Concerning Con, the following axioms must be satisfied for all finite 
subsets u, v _c D: 

(1) u ~ Con, whenever u c_ v ~ Con 

(2) {X} ~ Con, whenever X ~ D 

(3) u w {X} ~ Con, whenever u~-X 

Concerning ~-, the following axioms must be satisfied for all u, v ~ Con, and 
all X ~ D :  

(4) ut-A 

(5)ut--X, whenever X ~ u 

(6 ) i fv t -Yfo r  all Y~ u and ut-X, 
then v~-X 

In our case we may think of the members of  D as of  (actual) properties 
which our individual physical system may have. 

A is the trivial property engraved in each state of  the system (e.g., the 
property that the system under consideration is present). I f  u ~ Con is false, 
then the properties from u are never simultaneously actual. 

One can easily give a vast amount of  consistent or nonconsistent sets 
of  properties of  physical systems, quantum or classical as well. 

Example. Consider a piece of lead. Then the properties "the tem- 
perature of  the piece is 1000~ ' '  and "the piece has shape of a cube with 
edge 1 cm" are obviously inconsistent. The structure of  the set Con depends 
of course on a theory which describes our system and may change with the 
development of  the theory. 

Some of the properties may be mutually dependent.  The entailment relation 
~- for D should be constructed so as to respect the intended meaning of 
the properties of the system. So ~- is interpretated here in the sense of  a 
semantical relation of implication, i.e., the minimal assumptions on the 
relation ~- should give it the required property that v ~ X  iff whenever the 
system has the properties belonging to u then it has property X. 

The entailment relation is always relative to a class of  models (worlds, 
states, circumstances, situations etc.). We have examples of  appropriate  
relations of  (semantical) entailment in propositional calculus (consequence 
relations fi la Tarski), in quantum "logic" (defined by means of the partial 
ordering of "quantum lattice"), in modal realizations of  quantum "logic" 
(Dishkant, 1972, Dalla Chiara, 1977; Goldblatt ,  1974). 
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Sometimes the main part of the structure of  an information system 
may lie in the set Con, sometimes in the entailment relation, and sometimes 
it is in the interplay between the two notions (Scott, 1982). 

In most of  the interpretations of "logic" of quantum systems one c~.n 
easily point out the structure of  an information system. The interpretations 
single out the main difference between classical and quantum theory in the 
structure of  the set and /o r  in designation of the semantical entailment 
(Finkelstein, 1969). It seems reasonable to assume that to each physical 
system there is associated in information system (D, A, ~-, Con) where the 
set D, entailment relation ~-, the least informative member  A, and the set 
Con depend on the nature of  the system and on theory which describes it. 

Now (see Introduction) we argue that the (partial) state of  one given 
physical system at time to is uniquely determined by the set of  properties 
engraved in the system by preparation procedure and actual at that time to. 

Respectively, the pure state may be identified with the collection of all 
actual properties of  the system. This is exactly the definition of (pure) state 
given by Jauch and Piron (Jauch and Piron, 1969). 

One can ask which subsets of  properties can be taken to define the 
states of a system. It is rather reasonable to assume that the subsets should 
be consistent in themselves (because they describe real physical systems) 
and deductively closed: (entailment should be truth preserving). 

To return to the Scott theory of domains we can easily see that strict 
notional counterpart  of  our conception of (pure) state is that of  (total) 
element. 

Definition (Scott, 1982). The elements of the information system A = 
(DA, AA, Cona,  H-A) are those subsets x of  DA where (1) all finite subsets 
of  X are in COnA, and (2) whenever u c_ X and U~AX, then X e x. We write 
x c [A I to mean x is an element of  the system. An element that is not included 
in any strictly larger element in the set IAt is called a total element; the set 
of  total elements is denoted by TOta. 

Therefore it seems reasonable to accept the foliowing: 
Assumption. In each theoretical description of the phenomenology of 

the preparat ion process one can identify the set of all (pure) states of  a 
physical system with the set of (total) elements of some information system. 

One can give many examples of  (total) elements in various mathemati-  
cal formalisms. In propositional calculus elements are called theories, in 
modal logic, possible worlds; in quantum "logic" the Jauch-Piron states 
are examples of total elements. 

Because the elements (states) of an information system are introduced 
as sets, there is a natural relation of partial ordering under set-theoretic 
inclusion, x _c y means that each actual property of  x is also a property of  
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y. Moreover because for two elements x, y ~ IAI their intersection x c7 y is 
also an element, one can easily show (Scott, 1982) that IAI is a (conditionally) 
complete inf semilattice. 

Now we would like to enrich the structure of  the set of states. Perhaps 
the most important thing to have in mind if one is about to make precise 
the concept of  an approximate  statement of  the properties of  an element 
of  some structure is that one needs a topology, for a topology is the very 
mathematical  tool to settle all matters in which our intuition works with 
the idea of an approximation.  

We have a very natural notion of topology in the theory of information 
systems, the notion which we could easily adopt with obvious interpretation 
to the set of  physical states. 

Definition (Scott, 1982). Consider an information system A. For each 
u ~ Cona, we define a corresponding neighborhood of IAI by the equation 

[U]A = {y c lal: u c_ y} 

The neighborhoods of an element x are all those sets [U]A where u ~ x. 
The topology in the set of elements [A I is generated by so defined 

family of  neighborhoods. 
The above definition is entirely consistent with the intuitive notion of 

a neighborhood of an element (state). 
A neighborhood of an element (s tate)x~ IAI, generated by a finite 

element u ~ Cona, it is a set of all these elements states) y, which differ 
from the element x no more than u. The relation "differs no more than" is 
determined in terms of the relation of partial order Cona in the set IAt, and 
in our case it is connected with amount of information about the elements 
(states). 

It seems that in the framework of our model of  the set of  states of  
physical system, the above definition of topology is the most natural one. 

Theorem (Scott, 1982). The space Tota _ IAI with the induced topology 
is a totally disconnected, compact  Hausdorff space. 

The theorem is very important for further applications, for instance in the 
so-called "convex"  approach to the foundations of  quantum mechanics the 
main part is played by the convex set of all states of a physical sys tem-- the  
"statistical figure" (Mielnik, 1974). Mielnik in his papers (Mielnik, 1974, 
1980) has given a general recipe of the construction of "statistical figure," 
but only "up  to topological questions" (Haag and Barmier, 1978). In our 
paper  (Posiewnik, 1984) we gave the topological details lacking in the papers 
of  Mielnik and Haag and Bannier and we showed that the Mielnik construc- 
tion is possible to perform in the case when the set of pure states is equipped 
with a compact  topology. 
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In this instance the "statistical figure" is obtained as a compact convex 
set in locally convex Hausdorff topology. Then it is a good starting point 
for the construction of a statistical theory in which the mixtures of physical 
states are described in the terms of the Choquet theory (Alfsen, 1971). A 
detailed analysis of the problem can be found in Ref. 16 of Alfsen (1971). 
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